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History and actual status

e Discovery of the Seebeck principle in 1821

e In 1997, Stordeur and Stark demonstrated one of the first MEMS thermoelectric
microgenerators, followed in 1998 with the Seiko Thermic wristwatch, the first commercial

body-heat-powered watch:
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Fig. 2.1 - "Seiko Thermic’ body heat-powered watch overview. Source [1]

e In 2008, Micropelt GmbH developed the TE-Power Bolt, used in industrial equipment,
converting waste heat from machinery into electricity for battery-free loT sensors.

e Nowadays, research in nanostructured materials and printed and flexible thermoelectrics will
allow TEGs to be seamlessly embedded into clothing or medical implants.

Note. ThermoElectric Generators (TEG) will be used interchangeably with ThermoElectric
Harvesters
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MEMS operation principle
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Fig. 8.1 - BiTe-based thermocouple. Source [2]

e Thermocouples are
connected
-Electrically in series
-Thermally in parallel |

e V=(Sp-Sn)-AT-N T

Operates on Seebeck effect

Converts temperature differences
directly into electricity using
thermocouples (pairs of p-type and
n-type semiconductor legs)
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Fig. 3.2 - Thermoelectric Energy Harvesting: Basic Principles and Applications. Source [3]
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MEMS implementation

e No established industry standard — Micropelt TGP 751/651 study case

Micro thermoelectric device
(1sgmm)

Silicon Substrate p-BiTe Thermoelectric Element
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- Y \ Fig. 4.1 (Top-left) - BiTe Micropelt©® TEG CAD view. Source [4]

Fig. 4.2 (Bottom-left) - BiTe Micropelt© TEG SEM view. Source [5]
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Fig. 4.4 (Bottom) - Performance of Micropelt© MPG-D751. Source [7]
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Manufacturer Model Tyor Tcorp thermocouples Power Voltage Pricé® el Power density  Material
(K) (K) w) W) (/W)  (mmxmmxmm) (W/em?®)
Micr°Pelt MPG-D751 330 300 540 14x10™ 2.25 ~350 4.248x3.364x1.09 0.9 Bi-Te

Fig. 4.3 (Top-right) - BiTe TEG schematic schematic overview. Source [1]
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Characteristics
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Source [5]
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Power generation.

TGP-751 vs TGP-651

Fig. 5.2 - Typical BiTe Micropelt© TEG
CAD view (left) and performance (below).
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Fig. 5.1 - PolySi Phononic Crystal TEG
CAD view (left) and performance (below).
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Packaging and systems integration
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s . .
- Fig. 6.1 - Schematics extracted from TE-Power NODE Datasheet. Source [9]

e Maintaining temperature gradient — Optimal thermal interfaces
between the TEG and both heat source and sink

e Robust electrical and mechanical integration — stable connections,
protects components, and allows easy mounting on heat sources.

4 permanent
magnets
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Products and applications

e MEMS TEG still a field of active
research, with limited established
products commercially available

e Main purpose: powering remote
sensors and Internet-of-Things (loT)

applications

e Promising in low-power and
long-duty wearable devices
(medical implants, space
exploration etc.)
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Fig. 7.1 - Use case of Micropelt© TEG in loT applications: automated
heating control. Source - https://www.micropelt.com/en/energy-harvesting
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Wearable TEGs TEG helmet
Fig. 7.2 (Above) - Fields of research in TEG applications to medical applications. Source [10]

TEGs for pacemakers

Fig. 7.3 (Left) - Typical TEG-based remote sensing application. Source [11]
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Appendice - MEMS implementation

Advanced TEG principle =— using ‘Nanowires’ Nano-scale effects

orlseas o Main process steps

a. Metal deposition and patterning

b. Suspended poly-Si Phononic
Crystal (PnC) manufacturing

w‘«“/— — «%}}\ c. Cap wafer patterning and bonding

AU wire Fig. 9 a,c,d,e - Phononic Crystal TEG. (a) CAD render view of device. (c) Focus on energy
? : exchange within a TEG unit area. Scale bar, 20um (d) assembly of units into a TEG
DeVIce S' wafer device. e) PnC shape close-up view. Scale bar, 500nm. Source [8]
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