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History and actual status

● Discovery of the Seebeck principle in 1821

● In 1997, Stordeur and Stark demonstrated one of the first MEMS thermoelectric 
microgenerators, followed in 1998 with the Seiko Thermic wristwatch, the first commercial 
body-heat-powered watch: 

● In 2008, Micropelt GmbH developed the TE-Power Bolt, used in industrial equipment, 
converting waste heat from machinery into electricity for battery-free IoT sensors.

● Nowadays, research in nanostructured materials and printed and flexible thermoelectrics will 
allow TEGs to be seamlessly embedded into clothing or medical implants.

Note. ThermoElectric Generators (TEG) will be used interchangeably with ThermoElectric 
Harvesters

Fig. 2.1 - `Seiko Thermic’ body heat-powered watch overview. Source [1]
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MEMS operation principle

● Operates on Seebeck effect

● Converts temperature differences 
directly into electricity using 
thermocouples (pairs of p-type and 
n-type semiconductor legs)

● Thermocouples are 
connected
-Electrically in series
-Thermally in parallel

● V  = (Sp −Sn )⋅ΔT⋅N

Fig. 3.1 - BiTe-based thermocouple. Source [2]

Fig. 3.2 - Thermoelectric Energy Harvesting: Basic Principles and Applications. Source [3]
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MEMS  implementation Main design and processes used to produce the MEMS device in the industry

● No established industry standard        Micropelt TGP 751/651 study case

Fig. 4.1 (Top-left) - BiTe Micropelt© TEG CAD view. Source [4]

Fig. 4.2 (Bottom-left) - BiTe Micropelt© TEG SEM view. Source [5]

Fig. 4.3 (Top-right) - BiTe TEG schematic schematic overview. Source [1]

Fig. 4.4 (Bottom) - Performance of Micropelt© MPG-D751. Source [7]
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Characteristics

Fig. 5.1 - PolySi Phononic Crystal TEG 
CAD view (left) and performance (below). 
Source [8]

Fig. 5.2 - Typical BiTe Micropelt© TEG 
CAD view (left) and performance (below). 
Source [5]
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Packaging and systems integration

● Maintaining temperature gradient → Optimal thermal interfaces 
between the TEG and both heat source and sink

● Robust electrical and mechanical integration → stable connections, 
protects components, and allows easy mounting on heat sources.

TE-Power NODE

Fig. 6.1 - Schematics extracted from TE-Power NODE Datasheet. Source [9]
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Products and applications 

● MEMS TEG still a field of active 
research, with limited established 
products commercially available

● Main purpose: powering remote 
sensors and Internet-of-Things (IoT) 
applications

Fig. 7.1 - Use case of Micropelt© TEG in IoT applications: automated 
heating control. Source - https://www.micropelt.com/en/energy-harvesting

Fig. 7.2 (Above) - Fields of research in TEG applications to medical applications. Source [10]

● Promising in low-power and 
long-duty wearable devices 
(medical implants, space 
exploration etc.)

Fig. 7.3 (Left) - Typical TEG-based remote sensing application. Source [11]
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Appendice - MEMS  implementation Main design and processes used to produce the MEMS device in the industry

● Main process steps
a. Metal deposition and patterning
b. Suspended poly-Si Phononic 

Crystal (PnC) manufacturing
c. Cap wafer patterning and bonding

Fig. 9 a,c,d,e - Phononic Crystal TEG. (a) CAD render view of device. (c) Focus on energy 
exchange within a TEG unit area. Scale bar, 20um (d) assembly of units into a TEG 
device. e) PnC shape close-up view. Scale bar, 500nm. Source [8]

Advanced TEG principle        using ‘Nanowires’ Nano-scale effects


